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We demonstrate a metamaterial device whose far-infrared resonance frequency can be dynamically
tuned. Dynamic tuning should alleviate many bandwidth-related roadblocks to metamaterial
application by granting a wide matrix of selectable electromagnetic properties. This tuning effect is
achieved via a hybrid-metamaterial architecture; intertwining split ring resonator metamaterial
elements with vanadium dioxide �VO2�-a material whose optical properties can be strongly and
quickly changed via external stimulus. This hybrid structure concept opens a fresh dimension in
both exploring and exploiting the intriguing electromagnetic behavior of metamaterials. © 2008
American Institute of Physics. �DOI: 10.1063/1.2956675�

Advances in the recently emerging field of metamaterials
include the development and demonstration of devices for
subwavelength imaging,1 cloaking,2 ultrafast optoelectric
switching,3 and more. So far, these devices have most often
relied on geometrically fixed electromagnetic resonances
which restrict operation to a single frequency4,5 or narrow
band.6 Real-time tuning of the resonant response is one pos-
sible way to overcome limitations of bandwidth. Demonstra-
tions of tuning have been made for microwave frequencies
using integrated rf electrical components.7 At infrared and
higher frequencies, such components are unavailable, and
other means of implementing tuning must be found.8 Our
hybrid split ring resonator vanadium dioxide �SRR-VO2� de-
vice accomplishes this, granting a resonance tuning range of
20% or more.

Our device is made of 100 nm thick gold SRRs li-
thographically fabricated on a 90 nm layer of VO2 �see
Fig. 1�b��. The VO2 is grown on a sapphire substrate, and
thoroughly characterized by electrical9 and optical mea-
surements.10 VO2 undergoes a thermally triggered insulator-
to-metal phase transition11 that corresponds to a four orders
of magnitude change in conductivity. The SRR is the most
common and best characterized implementation of electro-
magnetic metamaterials.12–14 It responds resonantly to in-
plane electric fields, and out-of-plane magnetic fields. The
way which the VO2 and SRR layers interact is what makes
this hybid-metamaterial interesting. The thickness of the
lithographic gold comprising the SRRs and of the VO2 film
are both much less than the in-plane periodicity of the SRR
array �20 �m�. Metamaterial arrays like this have been
shown to form effective material layers whose electromag-
netic thickness is approximately the period of the array,14,15

rather than the physical thickness of the lithographic gold. In
this arrangement, the local electromagnetic fields of the SRR

overlap the VO2 layer �see Fig. 1�c�� and intertwine with the
VO2 material response. The VO2 film thus becomes part of
this effective material layer—due to its proximity to the
SRRs and thin size compared to the array periodicity. To-
gether they form a hybrid metamaterial—blending the prop-
erties of the VO2 film with those of the discrete SRR array.

The resonance frequency of the SRR metamaterial is
highly sensitive to the dielectric property of any material
placed nearby, especially in the vicinity of the SRR gaps.16

This circumstance, along with the following distinctive di-
electric property of VO2, enables the realization of a dynami-
cally tunable SRR-VO2 hybrid metamaterial. Near its
insulator-to-metal phase transition, VO2 exhibits a divergent
bulk permittivity �see Fig. 2�c��. This modifies the local
fields of the SRR within and around the gap region, acting
like a tunable dielectric inside a capacitor. The resonance
frequency of the SRR-VO2 hybrid system is expected to de-
crease as VO2 permittivity increases: a behavior anticipated
from a simplified RLC-circuit model of SRR response. Ex-
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FIG. 1. �Color online� Sketch of the vanadium dioxide SRR hybrid-
metamaterial. �a� Close-up of the SRR gap, sketched on top of a near-field
image of a VO2 film during phase transition. This comparison illustrates that
the VO2 percolating metallic grains �green� which emerge from the insulat-
ing host �blue� are much smaller than SRR gap. The sSNIM data is taken at
342 K. �b� Device layout and experimental setup. Gold SRRs of period
20 �m are lithographically fabricated above a 90 nm thick VO2 layer,
which has been grown on sapphire. The resonance of this hybrid-
metamaterial device is probed in transmission. �c� Blow-up of a single SRR
with electric field total amplitude results from a numerical solver, illustrat-
ing the overlap of the SRR fields with the VO2 film.
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perimental results as well as numerical simulations, reported
below, substantiate these expectations.

The observed divergent permittivity of the bulk VO2 is
understood to be due to the percolative nature of the phase
transition. During its phase transition, VO2 exhibits the
emergence and growth of tiny �5–10 nm� metallic puddles
�see Fig. 1�a�� in the insulating host. Figure 1�a� illustrates
this, showing near-field composition data obtained via scat-
tering scanning near-field infrared microscope �sSNIM�,
overlaid on a sketch of the 3 �m wide SRR gap. The effec-
tive medium response of the bulk VO2 material comprised of
these metal and insulating puddles is described by the
Bruggeman model.10 This arrangement is interesting as it
utilizes one nanometer-scale effective-medium �formed by
metallic puddles in the VO2 insulation host� within another
micron-size effective medium �formed by the periodic SRR
array�.

To probe this hybrid metamaterial, we perform Fourier
transform infrared transmission spectroscopy of our device.
We focus normally incident linearly polarized light from a
mercury lamp onto a 3 mm2 spot on the 1 cm2 sample. The
SRR array is oriented such as to electrically excite the SRR
by taking advantage of the asymmetrical in-plane dipole
moment created in the long and short legs of the SRR.17,18

In Fig. 2, we display transmission spectra for our hybrid
device. The room temperature spectra reveal a strong reso-
nance with a peak at 55 cm−1 �see Fig. 2�a��. As we increase
the temperature of the device, VO2 begins its transition and

the observed resonance peak frequency decreases. The tun-
ing of the resonance through the VO2 transition can be
mapped by plotting the peak frequency versus temperature
�see Fig. 2�b��. The resultant curve shows a sharp onset of
tuning as the phase transition begins, and has a tuning range
of 20%. At temperatures above 342 K, the resonance be-
comes heavily damped due to the increasing conductivity of
the VO2 layer. Eventually, the interconnecting VO2 metallic
puddles electrically short the SRR entirely, giving us the
ability to turn the resonance off at temperatures above
343 K.

We substantiate our experimental observations
numerically—simulating the metamaterial using the finite-
integration time-domain code package Microwave Studio by
CST, Inc. All three constituents of the device �SRR, VO2,
Al2O3 substrate� are included. These numerical results agree
very well with our experimental data—showing a room
temperature resonance at 55 cm−1. Simulations for elevated
temperatures �green tuning curve shown in Fig. 2�b��
use Bruggeman permittivity values for VO2 taken from
Fig. 2�c�,10 and also agree well with experimental data. The
accuracy of Microwave Studio for the prediction of the reso-
nance tuning of our SRR-VO2 hybrid is important, since
metamaterial design advances are largely reliant on such nu-
merical simulators.

In order to evaluate the parameter space where this
hybrid-metamaterial device enables tunable electromagnetic
properties, we retrieve permittivity and permeability values
for the metamaterial layer. This is done by modeling the
transmission through a two-layer device �hybrid SRR+VO2
and Al2O3 substrate� using the Fresnel equations. Electro-
magnetic oscillators are assigned to the material of each
layer, and then fit to the observed spectra.14 Literature values
for the permittivity of Al2O3 are used for the substrate.19

The oscillator used for the hybrid metamaterial layer is a
modified Lorentzian—incorporating effects arising from the
spatial dispersion present in the SRR array.20 This recent
advance in our fitting procedure gives a noticeable improve-
ment in fit over previous oscillator models.21 Figure 3 shows
the retrieved real permittivity and permeability. The room
temperature permittivity exhibits an expected strong reso-
nance. Room temperature permeability also shows a weak
antiresonance, even in our electric excitation configuration.
This is an artifact of the SRR array periodicity; spatial dis-
persion acts to couple the permittivity resonance to a perme-
ability antiresonance. This effect has been routinely observed
for metamaterials with periodicity such as ours—in the range
of one-tenth of a wavelength.22

At temperatures above 340 K, the retrieved permittivity
and permeability resonances both redshift. This frequency
shift follows the transition from insulator to metal with
temperature in VO2. Losses in the VO2 metallic puddles also
damp the resonance, decreasing the amplitude. Any non-
tunable metamaterial allows only a single pair of permittivity
and permeability curves. In contrast, the shaded area in
Fig. 3 illustrates a range of permittivity and permeability
values accessible with the help of our hybrid SRR-VO2 de-
vice. Through careful control of the sample temperature, we
can select any permittivity-permeability curve pair in the
shaded region. Electromagnetic flexibility of this kind is im-
mensely valuable in device design and operation.

The accuracy of our oscillator-fitting model in replicat-
ing the observed experimental spectra highlights the essence

FIG. 2. �Color online� Dynamic tuning of the SRR w0-resonance. �a� Trans-
mission spectra through the hybrid metamaterial device at increasing sample
temperatures. The resonance frequency decreases by nearly 20% as the va-
nadium dioxide passes through its metal insulator transition. �b� Resonance
frequency as a function of temperature. �c� �inset in b� VO2 Bruggeman
effective-medium permittivity.
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of the hybrid-metamaterial approach. Physically, our gold
SRR array and VO2 film comprise two distinct layers, each
only �100 nm thick. Electromagnetically, however, these
two layers are exceedingly well represented by one single
hybrid-material layer with combined properties of SRR and
VO2. As mentioned, the electromagnetic thickness of a SRR
array is approximated by the array periodicity, which can be
quite large compared to the physical thickness of the SRR. It
is this large electromagnetic thickness which allows us to
easily combine the properties of other nearby materials with
those of the metamaterial, forming a hybrid-metamaterial.

We stress that the phase transition in VO2 may be trig-
gered optically23 or electrically24 as well as thermally, thus
enabling photonic or electric control of the resonance in this
hybrid metamaterial. In these cases, one can envision locally
triggered sections of VO2 for pixel-like tuning of the
metamaterial. Taking advantage of advanced device architec-
tures can also expand the range of tuning, by making every
attempt to maximize the SRR electric flux inside the VO2.
Simulations performed employing embedded SRRs in
thicker 500 nm VO2 reveal a resonance shift of up to 40%—
twice the range of our demonstrated device. Our demonstra-

tion of dynamic tuning in this SRR-VO2 configuration sug-
gests the potential for rich physics and interesting effects in
other hybrid-metamaterial devices employing magnetic, non-
linear, or other materials. Combining the wide ranging phe-
nomena found in natural materials with the electromagnetic
design control offered by metamaterials may act to expand
the usefulness of each.
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